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Abstract.

One of the least understood temporal–scales of global carbon cycle (C–cycle) dynamics is its inter–annual variability (IAV).

This variability is mainly driven by variations in the local climatic drivers of terrestrial ecosystem activity, which in turn are

controlled by large–scale modes of atmospheric variability. Here, we quantify the fraction of C–cycle IAV that is explained

by large–scale atmospheric circulation variability, which is quantified by spatio–temporal sea level pressure (SLP) fields. CO25

variability is diagnosed from the detrended atmospheric CO2 growth rate and the land CO2 sink from different datasets in the

global carbon budget. We use a regularized linear regression model, a statistical learning technique, apt to deal with the large

number of atmospheric circulation predictors (p≥ 800, each representing one pixel–based time–series of SLP anomalies) in a

relatively short observed record (n < 60 years). We show that boreal winter and spring SLP anomalies allow predicting IAV

in atmospheric CO2 growth rate and of the global land sink, with Pearson correlations between reference and predicted values10

as high as 0.70–0.84 with boreal winter SLP anomalies. This is comparable or higher than that of a similar model using 15

traditional teleconnection indices as predictors. The coefficient patterns of the model based on SLP fields show a predominant

role of the tropical Pacific and over Southeast Asia extending to Australia, corresponding to the regions associated with the El

Niño/Southern Oscillation variability. We also identify one region in the western Pacific, roughly corresponding to the West

Pacific pattern.15

We further evaluate the influence of the time–series length on the predictability of IAV and find that reliable estimates of

C–cycle IAV can be obtained from records of ∼30–60 years. For shorter time–series (n < 30 years), however, conclusions

about CO2 IAV patterns and drivers need to be evaluated with caution. Overall, our study illustrates a new data–driven and

flexible approach to model the relationship between large–scale atmospheric circulation variations and C–cycle variability at

global and regional scales, complementing the traditional use of teleconnection indices.20

1 Introduction

All processes in the global carbon cycle (C–cycle) vary at multiple time scales ranging from minutes to millennium (IPCC,

2013). Quantifying and understanding the patterns of variability in the C–cycle and their drivers is crucial to better understand
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the drivers of C–cycle dynamics and better constrain future climate projections (Cox et al., 2013; Friedlingstein et al., 2014).

Primarily driven by the land sink dynamics (Piao et al., 2020), inter–annual variability (IAV) is one of the most uncertain and25

poorly understood terms of the global C–cycle in the observational period (Friedlingstein et al., 2019).

A fundamental challenge is that variability in land–atmosphere carbon exchange is affected in complex ways by atmo-

sphere–ocean climate variability but also land use changes, forced climate changes, direct physiological CO2 effects on ecosys-

tems, among others (IPCC, 2013). Separating these effects is challenging, since some of these processes are plagued by large

uncertainties (e.g., land use changes) (IPCC, 2013) or not directly observable at global scale (e.g., carbon uptakes by photosyn-30

thesis) (Schimel et al., 2015). The second challenge is that the land sink, as a balance of carbon uptake and release, responds

differently to variations in the climatic forcing (Jung et al., 2017; Piao et al., 2020). This makes it hard to attribute induced

land sink IAV to specific drivers, which is crucial for process understanding (Jung et al., 2017; Humphrey et al., 2018, 2021).

Last, the limited length of observational records may hamper robust statistical analysis (IPCC, 2013): the longest continuous

observations of atmospheric CO2 at the South Pole and Mauna Loa observatory exist only since 1958 onwards (Dlugokencky35

and Tans, 2019).

Land biospheric CO2 uptake results from the net balance of carbon uptake from gross primary productivity, and release

from multiple respiration terms, and disturbance induced fluxes such as fires, amongst other smaller terms (IPCC, 2013). Most

of these processes are primarily driven by temperature, water and radiation availability (Jung et al., 2017). These meteoro-

logical drivers are, in turn, modulated by large–scale modes of atmospheric circulation on multiple time–scales, such as El40

Niño/Southern Oscillation (ENSO) (Gu and Adler, 2011) and the Pacific Decadal Oscillation (PDO) (Newman et al., 2016).

These dynamics are generated within the coupled atmosphere–ocean systems (Ghil, 2002) and considered irreducible noise in

climate projections (Madden, 1976; Schneider and Kinter, 1994; Deser et al., 2012). Because these modes typically interact

and affect weather dynamics in regions beyond those where they are expressed, such modes are collectively referred to as

teleconnections (IPCC, 2013). Bacastow (1976) showed that ENSO is highly correlated with annual variations in observed45

atmospheric CO2 measured at the South Pole and Mauna Loa, Hawaii. Keeling et al. (1995) attributed these correlations to

the ENSO impact on the biospheric sink. In addition to ENSO, Zhu et al. (2017) showed that the PDO and AMO (the Atlantic

Multi–decadal Oscillation) may also influence global terrestrial ecosystem carbon fluxes and that other modes of variability in

the Northern hemisphere (NH) have also local impacts on carbon cycling (Zhu et al., 2017).

A common approach to diagnose the impacts of natural climate variability is to use ensembles of Earth system model50

simulations with perturbed initial conditions to quantify the impacts of natural climate variability at decadal to millennium

scales (Frölicher et al., 2013). However, the inherent chaotic atmosphere system contrasts with model structural uncertainty

resulting in large prediction discrepancies among models (Deser et al., 2020). Also, Earth system model projections can be

compromised by limited representation of the full complexity of physical processes involved, lack of observational constraints,

and high computational demands when aiming to resolve high resolutions (Randall et al., 2007; IPCC, 2013).55

Statistical approaches are a simplified but effective way to reveal physical processes in observations (von Storch, 1995). A

traditional approach consists of evaluating relationships between the variables of interest (e.g. CO2 time–series) and telecon-

nection indices (Bacastow, 1976; Bastos et al., 2013; Zhu et al., 2017). As a simple representation of the large–scale atmo-
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spheric variability modes, teleconnection indices are extracted mainly from sea surface temperature or atmospheric anomalies

(Kumar and Hoerling, 1997; IPCC, 2013). Such indices are an effective way to reduce the complexity of the spatio–temporal60

variability in multiple variables (Stenseth et al., 2003; Wills et al., 2017), but may not be able to capture spatial variations in

the atmospheric modes themselves.

Recently, Sippel et al. (2019) applied Ridge Regression (RR), a regularized linear regression method (Hastie et al., 2009;

Friedman et al., 2010), to quantify the component of precipitation and temperature variability driven by atmospheric variations

based on sea level pressure (SLP) fields, rather than teleconnection indices. Their approach allowed them to robustly infer the65

main spatio–temporal patterns of atmospheric variability influencing these two climate variables. On the one hand, including a

field of circulation–based predictors, avoids considering predefined assumptions about their spatial configurations as they are

common to teleconnection indices, while at the same time compensating for relatively short historical records. The regulariza-

tion approach, on the other hand, allows to overcome overfitting and multicollinearity issues due to short time series and a very

large number of spatial predictors.70

In this study, we aim to quantify the fraction of C–cycle IAV influenced by large–scale atmospheric variability. We use ob-

servation–based time–series of atmospheric CO2 growth rate (AGR) and land CO2 surface fluxes from atmospheric inversions

and Dynamic Global Vegetation (DGVMs), as well as the land sink estimated as a residual of other terms in the Global Carbon

Budget 2018 (Le Quéré et al., 2018). We additionally compare results with a very long time series (4000 years) of land CO2

fluxes simulated by the Community Earth System Model (CESM). In this study, we first evaluate and compare the predictive75

skill of predictions based on SLP anomaly patterns to that of traditional teleconnection indices (Section 3.1). Next, we analyze

and discuss how the C–cycle sensitivity to atmospheric circulation changes from various latitudinal domains (Section 3.2).

Finally, we evaluate the sensitivity of the results to the length of the time–series (Section 3.3).

2 Data and methods

2.1 CO2 datasets for the recent past80

We select the CO2 time–series datasets from the Global Carbon Budget (GCB) 2018 version 1.0 (Le Quéré et al., 2018): the

atmospheric CO2 growth rate (AGR), the land sink from models (SLDGVMs), the residual land sink (SLResid), and the land

sink from two atmospheric inversions.

In the GCB (Le Quéré et al., 2018), the global CO2 balance is calculated based on the carbon emissions from fossil fuel

(FF ) and land use change (FLUC), the AGR, the carbon uptake by the ocean sink (SO) and the land sink (SL).85

The difference of annual atmospheric CO2 in a given year and the previous year (Ballantyne et al., 2012; Dlugokencky

and Tans, 2018; Le Quéré et al., 2018) corresponds to the AGR, which is based on direct observations. The AGR is based

on the average of well–mixed CO2 measurements at multiple global stations from the US National Oceanic and Atmospheric

Administration Earth System Research Laboratory (NOAA ESRL) (Dlugokencky and Tans, 2018).

FF emissions are based on inventories, while FLUC, SL and SO are estimated by models (SLDGVMs and SO, respectively90

in Eq. (1), all of which contain uncertainties (Le Quéré et al., 2018). The total emissions from FF and FLUC minus AGR
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should equal the total SO and SLDGVMs (Eq. (1)). Due to uncertainties in modeled land and/or ocean sinks or in land use

estimations (Bastos et al., 2020; Hauck et al., 2020), the budget cannot be balanced and thus an imbalance term (IMB) is

introduced to the budget.

FF +FLUC −AGR−SO = SLDGVMs + IMB = SLResid (1)95

The annual land sink of CO2 (SLDGVMs) is the average net biome production (NBP) simulated by 16 dynamic global

vegetation model (DGVMs) forced with historical CO2 concentration and climate changes (Le Quéré et al., 2018). The residual

land CO2 (SLResid) is calculated from emissions, AGR, and ocean sinks, as described in Eq. (1). SLResid corresponds to the

balance of the fossil fuel and land–use change emissions and the sinks in the atmosphere and ocean and provides an alternative

estimate of the global land sink.100

The time–series ofAGRR, SLDGVMs, and SLResid in GCB2018 are provided at annual time–steps over the period 1959–2017.

In the following analysis, we invert the AGR time–series (AGRR for reversed AGR i.e. -1×AGR) for sign consistency with

the land sink datasets used (defined as a positive flux from the atmosphere to the land).

Additionally, we use the globally aggregated net atmosphere to land CO2 flux (positive sign as a sink in the biosphere) esti-

mated from two atmospheric CO2 inversions in GCB2018: the Jena CarboScope SLCarboScope (Rödenbeck, 2005; Rödenbeck105

et al., 2018), and the Copernicus Atmosphere Monitoring Service inversion SLCAMS (Chevallier et al., 2005), which cover the

periods 1976–2017 and 1979–2017 respectively. Here we use the global annual CO2 fluxes adjusted for fossil fuel emissions

and lateral fluxes from Bastos et al. (2020). The period common to the CO2 time–series (1980–2017) is selected.

2.1.1 Sea level pressure

We use global monthly mean SLP fields from ERA5 reanalysis with the spatial resolution of 0.25◦×0.25◦ (Bell et al., 2020),110

at monthly time–steps and covering the period 1950–1978 (Bell et al., 2020) and 1979–present (Hersbach et al., 2019). The

period common to other datasets of 1958–2017 is selected here.

2.1.2 Teleconnection indices

In addition to SLP fields, we select 15 teleconnection indices from the atmosphere–ocean variability, Northern Hemisphere

(NH), and Southern Hemisphere (SH).115

Three important atmosphere–ocean coupled variability modes influence global climate and the C–cycle: the El Niño–Southern

Oscillation (SOI), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO) (Zhu et al., 2017).

In the NH, the most relevant indices are: the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Pacific

North American pattern (PNA), the East Atlantic (EA), the East Atlantic/Eastern Russia (EAWR), the Scandinavian pattern

(SCAND), the Polar/Eurasia (polarEA), and the West Pacific (WP). These indices are calculated and provided by the Climate120

Prediction Centre (CPC) of the National Oceanic and Atmospheric Administration (NOAA). Excepting AO, these indices

are calculated using Rotated Principal Component Analysis (RPCA) (Barnston and Livezey, 1987), based on monthly mean

standardized 1000 mbar or 500 mbar geopotential height anomalies between 20◦ N and 90◦ N (Barnston and Livezey, 1987;
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Zhu et al., 2017) and provided by the NOAA National climate prediction center (CPC, 2008). The detailed information on

calculation procedures is described on NOAA CPC (2008).125

In the SH, important indices are the Antarctic Oscillation (AAO), the Tropical Atlantic Dipole (TAD), the Dipole Mode

Index (DMI) of the Indian Ocean Dipole, and the Trans Polar index (TPI).

The teleconnection indices used here have been summarized in Table 1. All the indices are provided as monthly means and

selected for the period of 1958-2017, except the AAO which is available for 1979–2017 only.

2.1.3 Long–term pre–industrial control simulations for statistical benchmarking130

Here we select the SLP fields and global net biome production fields (NBP) from simulations by the Community Earth System

Model (CESM) version 1.2.2 (in the B1850C5CN configuration), which has been used by Stolpe et al. (2019). This experiment

corresponds to a 4000-yr control run. The simulation was run at an atmospheric resolution of 1.9◦×2.5◦, using the Community

Atmosphere Model version 5 (CAM5.3; (Neale et al., 2012)) with 30 vertical levels. The model consists of fully coupled

atmosphere, ocean, sea ice and land surface components (Hurrell et al., 2013; Meehl et al., 2013b), and did not include dynamic135

vegetation. This simulation includes no external forcing, so it is ideal to analyze patterns driven by internal variability.

2.2 Data pre–treatment

For all historical datasets (CO2 time–series, SLP fields and teleconnection indices), we first remove years corresponding to

volcanic eruptions (1963, 1982, 1983, 1991, 1992). We then pre–treat the datasets as follows: 1) the long–term trend of CO2

time–series was removed by locally weighted scatterplot smoothing (LOWESS) of the annual time–series with fixed window140

size of 25 % interval longer than 30 years (1959–2017) and 45 % for shorter period (1980–2017). 2) The monthly mean

SLP fields are area–weighted and aggregated to 2◦×2◦, 5◦×5◦, and 9◦×9◦ spatial resolution, and the seasonal cycle removed

by subtracting the monthly mean values for each pixel. We then aggregate SLP values in seasonal means for: December of

the previous year to February of each given year (DJF), March–May (MAM), June–August (JJA), and September–November

(SON) and further consider DJF and MAM combined (DJF+MAM) so the number of grid points in DJF+MAM is double of145

DJF. 3) For monthly teleconnection indices, we remove the long–term trends by applying the LOWESS as for the SLP fields,

and calculate DJF, MAM, JJA, and SON mean values accordingly, and further include DJF and MAM combined (DJF+MAM)

as treated in SLP. Here, we refer to DJF and MAM as boreal winter and boreal spring.

For the CESM simulations, the SLP fields are originally provided at 1.9◦×2.5◦ spatial resolution at monthly mean time–steps,

which we then resampled to 5◦×5◦ spatial resolution. Annual mean NBP was calculated from the monthly fields. NBP and150

SLP fields were selected for the simulation period 1000–5000 year.

2.3 Methods

The overall goal is to characterize variations in the global C–cycle that can be explained by large–scale atmospheric circulation.

Here, the pixel–based time–series of SLP anomalies are used as predictors (p≥ 800) of CO2 time–series (n≤ 54 years) in a
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Table 1. Teleconnection indices

Index Name Description Source

SOI Southern Oscilla-

tion

Monthly sea level pressure anomalies differences (based on 1981–2010 monthly mean) between

Tahiti and Darwin, Australia. (McBride and Nicholls, 1983; Ropelewski and Jones, 1987)

Downloaded from the NOAA National centers for Environmental Information (NCEI).

https://www.ncdc.noaa.gov/

teleconnections/enso/indicators/

soi/#soi-calculation

PDO Pacific Decadal

Oscillation

Monthly sea surface temperature (SST) variations in the Northeast and tropical pacific Ocean

(Mantua et al., 1997; Mantua and Hare, 2002). Using EOF and regression over 20◦–90◦ N in the

Pacific (Mantua et al., 1997). Downloaded from NOAA NCEI.

https://www.ncdc.noaa.gov/

teleconnections/pdo/

AMO Atlantic multi-

decadal Oscilla-

tion

Monthly Northern Atlantic temperature fluctuations (Rayner et al., 2003; Enfield et al., 2001).

Computed by NOAA Physical Science Laboratory (PSL) (using Kaplan SST V2 dataset) from

0◦–70◦ N (Enfield et al., 2001). The detrended and unsmoothed version is selected.

https://psl.noaa.gov/gcos_wgsp/

Timeseries/AMO/

AO Arctic Oscillation Characterized by winds circulations near the Arctic around 55◦ N. Calculated by NOAA NCEI,

using Empirical Orthogonal Function (EOF) analyzes the monthly mean 1000 millibar height

variations over 20◦–90◦ N (Higgins et al., 2000, 2002).

https://www.ncdc.noaa.gov/

teleconnections/ao/

NAO North Atlantic

Oscillation

The Subtropical High and the Subpolar Low difference in sea level pressure (Barnston and

Livezey, 1987). Downloaded from NOAA NCEI.

https://www.ncdc.noaa.gov/

teleconnections/nao/

PNA Pacific-North

America

Low–frequency Variations in the Northern Hemisphere extratropics (Barnston and Livezey, 1987;

Chen and Van den Dool, 2003). Downloaded from NOAA NCEI.

https://www.ncdc.noaa.gov/

teleconnections/pna/

EA East Atlantic North–south dipole anomalies extending from the east to west North Atlantic, with a similar

spatial structure to NAO (Barnston and Livezey, 1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/ea.shtml

EAWR East At-

lantic/Western

Russia

Distinct by four dominant anomaly centers with positive phase extending Europe and Northern

China, negative covering central North Atlantic and North Capspian Sea (Barnston and Livezey,

1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/eawruss.shtml

SCAND Scandinavia A main anomaly center over Scandinavia, and a opposite weaker sign over western Europe and

eastern Russia/western Mongolia (Barnston and Livezey, 1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/scand.shtml

PolarEA Polar/Eurasia In positive pattern, negative height anomalies in polar region, and positive anomalies in Northern

China and Mongolia (Barnston and Livezey, 1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/poleur.shtml

WP West Pacific Low frequency variability of North Pacific (Barnston and Livezey, 1987). https://www.cpc.ncep.noaa.gov/

data/teledoc/wp.shtml

AAO Antarctic Oscilla-

tion

Empirical Orthogonal Function (EOF) was applied to the monthly mean 700hPa height anoma-

lies over 20◦–90◦ S (Mo, 2000). Calculated by NOAA (CPC, 2008).

https://www.cpc.ncep.noaa.gov/

products/precip/CWlink/daily_ao_

index/aao/aao.shtml

TAD Tropical Atlantic

Dipole

Here we use TSA (Tropical Southern Atlantic Index). Obtained from NOAA Physical Sciences

Laboratory (PSL), computed from the monthly SST average anomaly from 0◦–20◦ S and 10
◦ E–30◦ W, HadISST and NOAA OI 1x1 datasets are used (Enfield et al., 1999; Reboita et al.,

2021).

https://psl.noaa.gov/data/

correlation/tsa.data

DMI Dipole Mode Obtained from NOAA PSL, based on the sea surface temperature anomaly gradient between

the western and the South eastern equatorial Indian Ocean, HadISST1.1 SST is used (Saji and

Yamagata, 2003; Reboita et al., 2021).

https://psl.noaa.gov/gcos_wgsp/

Timeseries/Data/dmi.had.long.

data

TPI Trans Polar Normalized pressure difference between stations in Hobart and Stanley, Australia (Pittock,

1980, 1984; Jones et al., 1999), data calculated by University of East Anglia http://www.cru.uea.

ac.uk/cru/data/tpi/.

https://psl.noaa.gov/gcos_wgsp/

Timeseries/TPI/

linear regression model. However, the small sample size relative to the large number of predictors (n < p) can cause severe155

overfitting problems and result in unstable predictions (Hastie et al., 2009). Moreover, the existing spatial correlations among

the neighboring pixels of SLP anomalies might cause multicollinearity among the predictors (von Storch and Zwiers, 1999).
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The potential multicollinearity problem results in unstable regression coefficients in least square estimation, and making it

difficult to diagnose the most sensitive spatial patterns of predictors (von Storch and Zwiers, 1999).

Sippel et al. (2019) applied Ridge Regression (RR) to avoid these overfitting and multicollinearity problems. RR is a reg-160

ularized linear regression, whose the fundamental principle is to introduce a constraint (hyper–parameter λ) to regularize the

varying regression coefficients in least squares estimation (Hastie et al., 2009; Friedman et al., 2010). The regularized vari-

ance comes with a compromise of biased predictions and is addressed as the bias–variance trade–off (Hastie et al., 2009).

When selecting the best hyper–parameter λ, this trade–off is considered to achieve stable (low variance) while slightly biased

predictions (Hastie et al., 2009).165

Model performance is evaluated by the R2, the Pearson’s correlation R, and mean squared error (MSE) of the original CO2

time–series against predicted values. Pearson’s correlation R is selected as the main measure of predictability. At the same

time, R2 is optimized and verified for validity, and the significance P < 0.05 is selected. Given the relatively short period (n <

60), here we use leave–one–out (LOO) cross–validation to achieve optimal model training and testing. For each train and test

group splitting, we select the train group as all years excluding three consecutive years and the middle year of those three is170

then selected as the test sample. We excluded the preceding and following year to reduce the potential influence of temporal

auto–correlation. Here, we refer to the correlation of RR LOO predicted CO2 time–series with observed values as ρpredictors,

where the predictors are either SLP fields (ρSLP) or teleconnection indices (ρTele). The regression coefficients of RR LOO are

described as ωSLP and ωTele with SLP and teleconnection indices as predictors respectively.

A schematic description of the workflow from model training, validation and selection with the selected interval 1959–2017175

is shown in Fig. 1. In panel (a), the global maps represent an example of the spatial distribution of SLP with a resolution of

m◦×m◦, where m varies in [2, 5, 9]. Each pixel corresponds to a time–series of SLP, so that p predictors (xi) with n= 54

time–steps are defined. Each predictor is assigned a coefficient ωi to collectively predict CO2 time–series Y , with length n=

54. The cost function (Harrington, 2012) is the sum of all the squared errors of training yi minus estimated y′i (xT
i ω, ω represents

the vector of all ωi). At the same time, the constraint function (Harrington, 2012) suppresses the coefficient variations under a180

regularized range defined by the hyper–parameter λ. Panel (b) shows the model training and validation processes. In this study,

DJF SLP is in 9◦×9◦ with p= 800. Note that to reduce the heavy computation load, when conducting spatial and temporal

sensitivity study as described in Section 2.4, the range of λ is lower and with smaller steps than the range and step shown in

the Panel (b). For example, when only selecting the tropical domain of SLP, the number of predictors is much less than 800.

So the λ is selected in range [10, 1000] with a step of 50. When using teleconnection indices instead of SLP anomalies, the185

predictors are less than 15, the range of λ is selected from [1, 200] with a step of 2.

The first step is to divide datasets into train and test groups, as shown in panel (c). The grouped training datasets are then

used for model training and tune the best λ through 5–folds cross–validation, the best λ that achieves the optimal prediction

(highest LOO R2) is then selected by the model to predict test datasets. The model then starts another iteration with train and

test grouping. Panel (c) describes the LOO train and test grouping, the years before and after the selected test year are removed190

for each grouping to reduce the impact of temporal auto-correlations in CO2 time–series.
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RR (LOO) cross–validation is performed using the Python package Scikit–learn "Ridge" and the λ is tuned by Scikit–learn

"RidgeCV" (Pedregosa et al., 2011).

2.4 Experimental design

1. Preliminary dependency tests. To evaluate the robustness of the results for different characteristics of the datasets and195

methodological choices, we perform several preliminary tests. 1) Resolution–dependency test: evaluate the sensitivity

of results to the SLP spatial resolution under 2◦×2◦, 5◦×5◦, and 9◦×9◦; 2) Seasonality–dependency test: evaluate the

dependence of results on the definition of particular seasons, with each season is the combination of three consecutive

months (from November last year to July the given year). 3) Temporal auto–correlation of the CO2 time–series: to ensure

no significant trend remains in the detrended CO2 time–series.200

Here we directly use the results following the preliminary dependency test (Appendix A). The spatial resolution does

not influence the results considerably (see Appendix A Fig. A1), therefore we select 9×9◦ SLP spatial resolution given

its smaller number of grid points. The seasonal dependency test shows that DJF and MAM are seasonal combinations

more representative of boreal winter and spring (see Appendix A Fig. A2). JJA and SON are found to have lower or no

predictability to CO2 time–series, therefore, we limit our results to DJF and MAM. As shown in Appendix A Fig. A3, the205

temporal auto–correlation of all CO2 time–series is mostly less than 0.4 with lag ranging from 1 to 53 years. With a lag

of one year, absolute values of auto–correlation are below 0.2, so that we can exclude strong temporal auto–correlation

effects.

2. Model training and evaluation. We evaluate the predictability of annual CO2 time–series using SLP anomalies, tele-

connection indices, and SOI independently in the DJF, MAM, and DJF+MAM seasons, using the approach described210

above. We compare Pearson’s correlation of observations and predicted values for different periods (1959–2017 and

1980–2017) and show the corresponding RR coefficient distribution maps.

3. Spatial sensitivity study. We evaluate the predictability of historical annual CO2 time–series using DJF SLP anomalies

under different spatial domains in periods of 1959–2017 and 1980–2017. Then we use a 30–yr sliding window with

annual AGRR to depict how the predictability under various SLP domains evolves in the period 1959–2017.215

4. Temporal sensitivity study. We evaluate the predictability of annual CO2 time–series AGRR, SLDGVMs, and CESM

using DJF and MAM SLP anomalies under different time intervals. Sliding windows are employed at time intervals of

15, 20, 30, 40 years for historical datasets and CESM, and 100, 500, and 2000 years for CESM only. For the interval of

100 and 500 years, we use the sliding window of a 50 year step, and a 500 year step for the 2000 years interval. The

intervals less than 100 years are all in 1 year step. We also evaluate the error rate of the model in each sliding window of220

15, 20, 30, and 40 year lengths. The error rate is calculated by the number of invalid predictions that with significance

P > 0.05 in ρSLP divided by the number of total predictions within a given window.
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Cross-validation (CV)  
leave–one–out 

train_x: 51 * 800, train_y: 51 * 1
test_x:    1 * 800, test_y:    1 * 1

Ridge regression 
  λ varies in [100, 5900], step

200,  
5-folds CV selects the best λ

R2_train 
R_train 

Predicted y: 1 * 1 

Output 
  Predicted y: 54 * 1
  R2_test
  R_test

N90

2017

y1
y2

y53

y54

W180 E180
S90

0

(b)
Input: 

X:  SLP, 1959–2017, 9 * 9, shape 54 * 800
Y:  CO2, 1959–2017, shape 54 * 1 

0 2016

1959
1960

Detrended
CO2 time–series 

 

Sea level pressure anomalies 
Resolution of                 ,        in [2, 5, 9] Fit to Ridge Regression

x2x1 x3

Input 54
years  

1959

1960

1961

1962

2017
2016
2015

Iteration 1

Test 

(a)

(c)

0

Iteration 2 Iteration 3

1964

Train

1959

1960

1961

1962

2017
2016
2015

Test 

1964

Train

1959

1960

1961

1962

2017
2016
2015

Test 

1964

Train

Train

Cost function:

Constraints to       :

(Friedman et al., 2010; Harrington, 2012; Hastie et al., 2017)

(1)

(2)

(3)

(4)

(5)

Figure 1. Schematic representation of the statistical approach and model design, with an example of the selected time interval of 1959–2017.

(a) Fundamental principle of RR. (b) Model training and validation under RR LOO cross–validation. (c) Train and test grouping through

LOO.
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3 Results and discussion

3.1 Global IAV patterns

In this section, we use the global SLP fields and teleconnection indices as predictors in the RR and, for comparison with other225

studies, the SOI index as a single predictor in linear regression (LR). We test their predictability to C–cycle IAV with different

detrended CO2 time–series, by evaluating the performance of the RR/LR over DJF, MAM and DJF+MAM (Fig. 2).

We find the detrended CO2 time–series are generally consistent with each other, except the SLDGVMs show slight deviation

(Fig. 2 a). We find two anomalous years (1987 and 1998), which show deviations larger than 2 standard deviations in most CO2

time–series, both signifying apparent AGR increases and subsequent lower land sink (Fig. 2 a). These two years correspond to230

strong El Niño events, which are usually associated with below–average land CO2 uptake (Keeling et al., 1995; van der Werf

et al., 2004; Bonan, 2016).

Here, we refer to the ρSLP as the LOO correlation of predicted and observed CO2 time–series based on RR and with SLP

anomalies as predictors. Accordingly, ρTele refers to the LOO correlation that has teleconnection indices as predictors. LOO

correlation by linear regression based on the single predictor of SOI index is represented by ρSOI.235

SLP and teleconnection indices show comparable predictability of C–cycle IAV in winter, while teleconnection indices have

higher predictability in spring (Fig. 2 b). In both periods, the value of ρSLP (except SLDGVMs) is higher in DJF (0.51–0.70)

than in MAM (0.29–0.60). On the other hand, the values of ρTele are higher in MAM (0.57–0.79) than in DJF (0.53–0.70).

The relative low prediction skill of global SLP anomalies compared to teleconnection indices might result from: 1) limited

sample size (less than 60 years) and a large number of predictors (p= 800) for RR training with global SLP anomalies. But240

for teleconnection indices and SOI, the predictability skills are much less influenced by the limited sample size due to their

limited predictors (p≤ 15 for teleconnection indices and p=1 for SOI). As we increase the sample size to over 100 years,

the prediction skill of SLP anomalies increases considerably, as is shown in temporal sensitivity study (Fig. 6 a), and 2) the

predictability of SLP anomalies in explaining global C–cycle IAV can be reduced in domains with large local rather than global

impacts of atmospheric variations to land carbon sinks (Jung et al., 2017). In such domains, the SLP anomalies might show245

strong relationship to local C–cycle variations but weaker link to global C–cycle variations. Selecting the domains with higher

contribution to the global C–cycle variability could improve the predictability, as is shown by the analyzes of sensitivity of the

results to the spatial domain (Fig. 4).

Compared to ρTele, which includes a set of 14 teleconnection indices for period 1959–2017 and 15 for period 1980–2017

as predictors, the ρSOI is slightly lower or similar in both seasons, with 0.53–0.67 in DJF and 0.60–0.74 in MAM (Fig. 2 b).250

This is consistent with the dominant role of ENSO in driving C–cycle IAV, with other modes showing less contributions. Such

interpretation requires caution as the indices cannot fully represent the complex atmospheric dynamics.

The predictability of the combined winter and spring SLP anomalies reveal the different seasonal responses of C-cycle IAV

to atmospheric variability (Fig. 2 b). The ρSLP and ρTele in DJF+MAM is within the values for DJF and MAM for most

datasets, and slightly higher than the best performing season for ρSOI.255
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Figure 2. (a) Standardized annual CO2 time–series over period 1959–2017 (AGRR in black, SLResid in red and SLDGVMs in yellow), and

in period 1980–2017 (SLCAMS in light blue and SLCarboScope in dark blue). The CO2 time–series have all been detrended as described in

Section 2. Note that the AGRR, SLResid, and SLDGVMs in period 1980–2017 are detrended based on their relevant period, and compared

with detrended based on 1959–2017, the difference is negligible. (b) LOO correlation of predicted vs observed CO2 time–series based

on the RR with SLP fields (ρSLP) or teleconnection indices (ρTele) as predictors. Additionally, LOO correlation of CO2 time–series by

linear regression based on the single predictor of SOI index (ρSOI ). SLP fields, teleconnection indices, and SOI are aggregated for different

seasons: DJF, MAM, and DJF+MAM. Panel (b) shows results for 1959–2017 and panel (c) for 1980–2017. Note that in panel (c), the ρSLP

of SLCAMS using MAM SLP as predictor has significance P = 0.09, all others have significance P < 0.05.
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The ρSLP of SLResid is similar to ρSLP of SLDGVMs in MAM and slightly higher than ρSLP of SLDGVMs in DJF. The

difference in the ρSLP for SLResid and SLDGVMs in DJF may due to: 1) compared to SLResid, land sink IAV simulated by

DGVMs is less sensitive to DJF climate forcing (Bastos et al., 2018), 2) SLResid implicitly includes the variability from land

use changes as well as ocean sink variations (Dufour et al., 2013; DeVries et al., 2017; Friedlingstein et al., 2019).

We next compare the spatial coefficient patterns of SLP and teleconnection indices in the period of 1959–2017, the results260

of the period 1980–2017 can be found in Appendix A Fig. A4 and A5.The spatial patterns of the ωSLP are similar for the

three CO2 time–series: positive coefficients over eastern tropical Pacific Ocean and negative coefficients from Southeast Asia

extending to Australia that together roughly consistent with ENSO, and negative from west Pacific (Fig. 3 a). In DJF the

negative coefficients over the eastern tropical Pacific are higher than in other regions, while in MAM the area over the central

and western tropical Pacific shows higher sensitivity, which are influenced by El Niño and La Niña respectively (Monahan,265

2001; Hsieh, 2004; Rodgers et al., 2004; Schopf and Burgman, 2006; Sun and Yu, 2009; Yu and Kim, 2011): El Niño induces

negative SLP anomalies over the East Pacific and positive SLP anomalies over the west Pacific (see King et al. (2020), Fig. 5).

We infer that the land sink is negatively driven by El Niño in winter (strong El Niño, decreased land sink) and positively driven

by La Niña in spring (strong La Niña, increased land sink).

The higher ωTele are consistent with the high sensitivity domains of the ωSLP corresponding to the patterns of ENSO and WP270

(Fig. 3, b). Our results show that C–cycle IAV reveals a high positive sensitivity to SOI (0.18 to 0.21) and negative sensitivity

to TPI (-0.24 to -0.28) and WP (-0.09 to -0.15) in DJF. High sensitivities are also found for DMI in DJF (negative) and AMO in

MAM (negative) (Fig. 3, b). We find that the C–cycle IAV is very sensitive to TPI as well as SOI, which is not so obvious for the

spatial patterns of ωSLP. TPI is a hemispheric–scale index and defined as the pressure anomaly difference between the locations

Hobart (43◦ S, 147 ◦E) and Stanley (52◦ S, 58◦ W) (Pittock, 1980, 1984). We find the TPI to be strongly anti–correlated with275

SOI in DJF and MAM (-0.89 and -0.85, respectively). This might imply strong atmospheric impacts of ENSO on the C–cycle

IAV due to atmospheric variability in SH mid–latitudes.

However, the observed patterns in ωTele and ωSLP need to be interpreted with caution, since these patterns are not necessarily

independent from each other. For example, The area from Southeast Asia extending to Australia corresponds to a region

influenced by several modes of atmospheric variability: ENSO, the Indian Ocean Dipole (IOD), and the Southern Annular280

Mode (SAM) (Cleverly et al., 2016). Interactions between these modes have been shown to modulate the occurrence of drought

and extreme precipitation in semi–arid areas of Australia, and thus induce large inter–annual variability in gross primary

productivity in the region (Cleverly et al., 2016).

Compared to other CO2 datasets, SLDGVMs shows higher SLP predictability in MAM rather than DJF (Fig. 2 b). Moreover,

ωSLP of SLDGVMs exhibits distinct spatial patterns, especially in DJF, where ωSLP for SLDGVMs is higher in the Southern285

Pacific rather than over the tropical Pacific region (Fig. 3 a). Compared to historical results, modeled SLDGVMs show lower

predictability in winter rather than in spring, and the spatial patterns of the coefficients for SLDGVMs are slightly different.

These differences might be an indication of shortcomings of DGVMs in simulating the sensitivity of land sink to climatic

drivers.
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Figure 3. (a) Distribution of ωSLP with the time–series of AGRR (top row), SLResid (center row) and SLDGVMs (bottom row) in DJF (left

column) and MAM (right column) based on SLP fields in the period 1959–2017. (b) ωTele of AGRR, SLResid and SLDGVMs based on

teleconnection indices. Both ωSLP and ωTele are the mean of the n= 54 run LOO coefficients.
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Figure 4. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in DJF. Each heat map contains 5×5 squares, and each

square represents one domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N extending to 72◦

S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale SLP. ρSLP of AGRR,

SLResid, SLDGVMs, SLCAMS, and SLCarboScope in 1980–2017 are shown here.

The general match of spatial patterns from the RR using SLP and the teleconnection indices as predictors of C–cycle IAV290

indicates that SLP can capture the spatial distribution of the atmospheric patterns that influence IAV, with the advantage of

being more flexible than teleconnection indices, since it does not require predefined definitions. However, the short sample size

and the large number predictors for RR training hinder the performance of SLP anomalies, especially the lower predictability

of SLP anomalies in spring. Reducing the number of predictors (smaller domains of SLP anomalies) or increasing the sample

size (longer time interval) for RR training could improve the predictability skill of SLP anomalies. Therefore, in the next295

subsections, we conduct the spatial and temporal sensitivity of the global C–cycle to SLP anomalies.

3.2 Sensitivity to the SLP domains

Here, we test the sensitivity of results to the choice of domain, by evaluating the performance of the RR for DJF and MAM

over different latitudinal bands (Fig. 4). We find improved predictability in both seasons when selecting smaller domains

(particularly the tropics) rather than global scale of SLP anomalies. Compared to DJF, the sensitivity analysis for ρSLP with300

MAM fields shows lower correlations in general and lower sensitivity to the spatial domain considered. In the following, we
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show the results for DJF, the results for MAM can be found in Appendix A Fig. A7. Here we only show the results of the

period 1980–2017. The results of the period 1959–2017 show a similar trend (see Appendix A Fig. A6)

Consistent with previous studies (Zeng et al., 2005; Piao et al., 2020), the tropical domain corresponds to higher ρSLP for

all datasets, but we also find that stronger ρSLP are found for regions extending from the tropics to the Southern Hemisphere305

(SH) (Fig. 4). Including Northern Hemisphere regions (NH) results in lower ρSLP. The domain 18◦ N–72◦ S shows the highest

ρSLP, with ρSLP of 0.81 for AGRR and 0.85 for SLResid in 1980–2017.

The results for net atmosphere-land fluxes estimated by atmospheric inversions are consistent with those ofAGR, with ρSLP

of 0.70 for SLCAMS and 0.76 for SLCarboScope in the same domain of 18◦ N–72◦ S. The values of ρSLP of SLDGVMs are

systematically lower than the other datasets, independently of the domain.310

The weaker values of ρSLP when extending SLP domains from tropics to NH (Fig. 4) might be due to the local rather than

global impacts of atmospheric variability in NH to land sink IAV. Additional explanations include the fact that carbon fluxes

are weaker in winter NH, so that atmospheric variability exerts weaker influence in the global land sink, and that there are

strong compensatory effects of gross primary productivity versus terrestrial ecosystem respiration in the NH in response to

water and temperature variations (Jung et al., 2017).315

The importance of SH atmospheric variability in predicting IAV in CO2 time–series (Fig. 4) is likely due to the strong

contribution of semi–arid regions in the SH extratropics to the global sink through their drought/wet anomalies (Poulter et al.,

2014; Ahlström et al., 2015), which are controlled by atmospheric variations in the SH (ENSO and ENSO related modes) and

to the interactions between ENSO and other modes of atmospheric variability in the SH, such as the synergistic effects from

ENSO, IOD and the SAM on Australia C–cycle variability (Cleverly et al., 2016).320

3.3 Sensitivity to the temporal domains

Because of multi–decadal variability in the climate system, it is possible that the relationships found for short intervals are not

stable. In order to investigate whether these results depend on the temporal domain considered, we additionally analyze the

results for different temporal domains using a 30–yr interval sliding window (Fig. 5).

Results show stronger ρSLP ofAGRR confined to the tropics in earlier periods and an intensification of these correlations for325

the domains extending to the SH over the study period. In some periods, the tropics and Southern extratropics domain shows

the highest values of ρSLP, for example in 1978–2011 and 1984–2015 (Fig. 5). There is, however, high temporal variability

in ρSLP and of the most relevant spatial domain, with other periods showing higher global coherence (e.g. 1968–2003). It is

unclear whether these temporal variations occur randomly due to internal variability in the climate system, or are influenced

by external forcing. Potential explanations for this pattern include trends found in SLP and SLP variability over the Pacific330

and Southern Atlantic (Schneider et al., 2012; IPCC, 2013; Roxy et al., 2019), or enhanced sensitivity of C–cycle variability to

climatic drivers, particularly in semi–arid areas, under progressive climate change (Wang et al., 2014; Poulter et al., 2014).

Understanding and attributing these changes to given processes is beyond the scope of this study, but these results highlight

the importance of the temporal domain when analyzing IAV in the C–cycle. Since CO2 time–series are short and cover only

limited temporal domains, results are likely to be affected by multi–decadal internal climate variability, in addition to external335
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Figure 5. ρSLP of AGRR with DJF SLP over various latitude domains. A 30–yr sliding window in the period 1959–2017 with a one year

step is created. The starting and end year of each interval is labeled on the top of each heat map. Here we only show the results of every

second starting year, the full results are in Appendix A Fig. A9.

forcing. Moreover, the data–driven RR method to quantify circulation–induced C–cycle variability uses a large number of pre-

dictors, while only relatively short time series are available for training, which may negatively affect the model’s performance.

Therefore, we further test the sensitivity of the results to the length of the time–series (Fig. 6). We test the predictability of

C–cycle IAV for different lengths of the temporal domain: 15, 20, 30 and 40 years for the datasets in GCB2018 and CESM

simulations and 100, 500 and 2000 years for CESM only.340

The boxplots in Fig. 6 show the distribution of ρSLP calculated for multiple periods of a given length using a sliding window

over the whole period of the respective time–series for the global and tropical domains. The spread of ρSLP provides an

indication of internal variability in the predictability of C–cycle IAV due to the choice of temporal domain and the uncertainty

in the RR fit for a large number of predictors and comparatively small number of training samples.

We find that the longer the time interval the higher the mean ρSLP and the smaller the variation, i.e. the less dependent are the345

results on the temporal domain considered (Fig. 6 a). However, the mean value tends to be lower than the median for intervals
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shorter than 30 years, and similar to the median for longer intervals. The lower mean is influenced by some domains with very

low or even negative ρSLP from invalid predictions in shorter time intervals.

The mean ρSLP of AGRR in DJF for the global domain increases from 0.45 to 0.61 from 15–yr to 40–yr respectively, while

the spread (maximum - minimum) decreases from 1.04 to 0.18. Results for SLDGVMs are consistent with those ofAGRR, with350

systematically lower mean ρSLP for DJF and higher for MAM, but similar spread in both. The mean values of ρSLP for CESM

in DJF over the global domain increase from 0.42 (15–yr) to 0.57 (40–yr) and to 0.84 (2000–yr), and the spread decreases from

1.72 to 0.72 and to 0.008, respectively.

At global scale, the predictability of SLP anomalies with AGRR and with models from SLDGVMs and CESM are different

in winter and spring (Fig. 6 a). ρSLP of AGRR is higher with winter SLP (0.61 in 40–yr DJF), but ρSLP of SLDGVMs and355

CESM are higher with spring SLP (0.70 and 0.65 in 40–yr MAM).

When limiting the SLP domain to the tropics, results follow the same patterns as those at the global scale, but with better

predictive skill: ρSLP of AGRR shows the highest mean correlation of 0.74 for periods of 40 years in DJF (Fig. 6 a). ρSLP of

SLDGVMs shows the highest mean predictability, with ρSLP of 0.73 for 40–yr MAM (Fig. 6 a), a result that is very similar to

those of CESM for the same temporal length (ρSLP=0.70). We find that with different time scales, tropical SLP in DJF leads to360

higher predictability of AGRR than global SLP fields. While the MAM tropical SLP only shows slightly higher predictability

than global SLP for SLDGVMs and CESM.

We find that AGRR is highly influenced by DJF tropical SLP, while SLDGVMs and CESM are more sensitive to MAM

tropical SLP (Fig. 6). This is consistent with the results of Fig. 4 even when different time scales are considered.

However, the Earth system models have been found to not reliably simulate the seasonal timing of ENSO occurrence365

(Sheffield et al., 2013). The predictability of SLP in seasonal and domain differences between observation data and models

could be used as an indicator to reveal their different driving mechanisms.

We evaluate the error rate (i.e., the fraction of predictions in one sliding window with ρSLP of significance P > 0.05) for

AGRR, SLDGVMs, and CESM (see Appendix A Fig. A10). We find that the time interval needed for a robust RR LOO C–cycle

IAV prediction is at least about 30 years. For periods shorter than 30 years, the rate of invalid predictions (in the sense given370

above) can be higher than 40 % for most datasets and SLP domains and seasons. It is worth noting that for AGRR, DJF SLP in

the tropical domain still leads to low error rates (13 % in 15–yr), likely due to a smaller number of predictors. From the 15–yr

to 30–yr interval, the error rate of ρSLP of AGRR reduces from 0.4 to 0 in DJF global and 0.13 to 0 in DJF tropical. The error

rate of ρSLP decreases to less than 0.16 in 30–yr interval, except ρSLP of AGRR decreases to 0.24 in MAM global, which

also matches the relative low predictability of MAM SLP anomalies in the period 1980–2017 with different spatial domains375

(see Appendix A Fig. A7 b). All error rates are reduced to almost zero in a 40–yr interval.

4 Conclusions

The major objective of this study was to explore the relationship between SLP anomalies (as a proxy of large–scale atmospheric

variations) and the global C–cycle IAV. Specifically, our goals are 1) to investigate the skill of SLP to predict C–cycle IAV
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using RR and to compare with traditional teleconnection indices, and 2) to reveal how the atmospheric variations influence380

C–cycle IAV at various spatio–temporal scales.

First, we find that boreal winter and spring SLP anomalies allow predicting IAV of atmospheric CO2 growth rate and IAV of

the global land sink. Particularly, with Pearson correlations between detrended CO2 time–series and RR predictions reaching

as high as 0.70–0.84 in boreal winter. This is comparable or higher to that of a set of 15 commonly used teleconnection indices.

The spatial patterns of coefficients reveal a strong influence of atmospheric variability on C–cycle IAV, particularly due to385

the El Niño / Southern Oscillation and West Pacific domains. Second, the comprehensive spatio–temporal sensitivity analysis

indicates an increasing sensitivity of C–cycle IAV to atmospheric variability during boreal winter in the Southern Hemisphere

extratropics in the recent decades. This increased sensitivity may be influenced by internal climate variability or by enhanced

sensitivity of C–cycle variability to externally forced changes, but requires further research. Finally, we find that time–series of

at least 30 years are needed for robust predictability of C–cycle IAV. For shorter time–series, predictability is highly dependent390

on the particular period considered, and thus largely due to artifacts of random variability in the fitting process.

Overall, RR provides a novel and efficient data-driven approach for detecting the relationship of atmospheric variations to

C–cycle variability. Compared to teleconnection indices, this approach requires no pre–defined spatial configurations and is

more flexible on revealing comparable or higher regional prediction skills to C–cycle IAV. This methodology can, therefore,

help to improve the detection and attribution of C–cycle variability responses to different driving processes at regional to395

continental scales.

18

https://doi.org/10.5194/egusphere-2022-96
Preprint. Discussion started: 4 April 2022
c© Author(s) 2022. CC BY 4.0 License.



0.2

0.0

0.2

0.4

0.6

0.8

1.0

SL
P

DJF global MAM global

15 20 30 40 100 500 2000
Time interval (years)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

SL
P

DJF tropical

15 20 30 40 100 500 2000
Time interval (years)

MAM tropical

AGRR
SLDGVMs
CESM

(a)

0.0 0.2 0.4 0.6 0.8 1.0
SLP

0

2

4

6

8

Pr
ob

ab
ilit

y 
de

ns
ity

AGRR

0.0 0.2 0.4 0.6 0.8 1.0
SLP

SLDGVMs

DJF global
DJF tropical
MAM global
MAM tropical

0.0 0.2 0.4 0.6 0.8 1.0
SLP

CESM

(b)

Figure 6. ρSLP of AGRR, SLDGVMs, and CESM NBP under various time intervals. The ρSLP of AGRR and SLDGVMs are both within

the period 1959–2017, with a 1 year step sliding window of 15, 20, 30, and 40 year. ρSLP of CESM in the period 1000–5000 and covers

extra intervals of 100, 500, 2000 years. The distribution of the ρSLP under each sliding window with SLP in (a): DJF global, MAM global,

DJF tropical and MAM tropical. Tropical domains are 18◦ N–18◦ S for SLP in ρSLP of AGRR and SLDGVMs, and 20◦ N–20◦ S for SLP in

ρSLP of CESM. Note that the mean values are in black dots. (b) The distribution of ρSLP of AGRR, SLDGVMs and CESM NBP in a 30–yr

sliding window.
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Figure A1. ρSLP of AGRR, SLResid and SLDGVMs under different DJF SLP resolution (2◦×2◦, 5◦×5◦, 9◦×9◦) by RR LOO in period of

1959–2017.
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Figure A2. ρSLP of AGRR, SLResid and SLDGVMs under different seasonal SLP (with different month combination) by RR LOO in

period of 1959–2017. Each combination represents: NDJ (November, December, and January), DJF (December, January, and February),

JFM (January, February, and March), MAM (March, April, and May), AMJ (April, May, and June).
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(a)

(b)

Figure A3. Time series auto–correlations of pre–treated CO2 time–series in period (a) 1959–2017 for AGRR, SLResid and SLDGVMs. (b)

1980–2017 included two more inversions SLCAMS and SLCarboScope.
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Figure A4. Distribution of ωSLP with the time–series of AGRR (top row), SLResid (second row), SLDGVMs (third row), SLCAMS (fourth

row) and SLCarboScope (last row) in DJF (left column) and MAM (right column) based on SLP fields in the period 1980–2017. ωSLP are the

mean of the n= 34 run LOO coefficients. Note that ρSLP of SLCAMS MAM has P > 0.5.
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Figure A5. Distribution of ωTele with the time–series of AGRR, SLResid, SLDGVMs, SLCAMS and SLCarboScope based on teleconnection

indices in period of 1980–2017.
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Figure A6. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in DJF. Each heat map contains 5×5 squares, and

each square represents one domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N extending

to 72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale SLP. ρSLP of

AGRR, SLResid, SLDGVMs in 1959–2017.
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Figure A7. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in MAM. Each heat map contains 5×5 squares,

and each square represents one specific domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦

N extending to 72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale

SLP. Time series is from (a) 1959–2017 for AGRR, SLResid and SLDGVMs. (b) 1980–2017 included two more inversions SLCAMS and

SLCarboScope.
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Figure A8. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in DJF+MAM. Each heat map contains 5×5 squares,

and each square represents one specific domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦

N extending to 72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale

SLP. Time series is from (a) 1959–2017 for AGRR, SLResid and SLDGVMs. (b) 1980–2017 included two more inversions SLCAMS and

SLCarboScope.
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Figure A9. Heat map of ρSLP of AGRR with DJF SLP over various latitude domains. A 30–yr sliding window in the period of 1959–2017

with a one year step is created. The starting and end year of each interval is labeled on the top of each heat map.
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Figure A10. Error rate of sliding window in 15, 20, 30 and 40 year intervals. For each sliding window, the error rate is calculated by the

number of invalid predictions (with significance P > 0.05 in ρSLP of CO2 time–series) divided by the number of total predictions. With

SLP in DJF global, MAM global, DJF tropical and MAM tropical as predictors, the error rate of ρSLP of (a)AGRR, (b) SLDGVMs, and (c)

CESM are plotted.
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Appendix B: Data availability

The Global Carbon Budget 2018 dataset (Le Quéré et al. (2018)) is available at https://www.icos-cp.eu/science-and-impact/

global-carbon-budget/2018. The two atmospheric inversion datasets are available in Bastos et al. (2019). The monthly sea level400

pressure is from ERA5 reanalysis available at Climate data store, for the period 1959-1978 is from Bell et al. (2020) and the

period 1979-2017 is from Hersbach et al. (2019). The download links for the 15 teleconnection indices are available in Table 1

of Section 2.1.2. The sea level pressure and NBP from CESM1.2 is available in Stolpe et al. (2019).

Appendix C: Code availability

The Python scripts are available at https://edmond.mpdl.mpg.de/privateurl.xhtml?token=8f717b4f-aea2-4a9b-96a3-efc8487e54af405
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